Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates.
نویسندگان
چکیده
Thermally responsive polymers present an interesting avenue for tuning the optical properties of nanomaterials on their surfaces by varying their periodicity and shape using facile processing methods. Gold bowtie nanoantenna arrays are fabricated using nanosphere lithography on prestressed polyolefin (PO), a thermoplastic polymer, and optical properties are investigated via a combination of spectroscopy and electromagnetic simulations to correlate shape evolution with optical response. Geometric features of bowtie nanoantennas evolve by annealing at temperatures between 105 °C and 135 °C by releasing the degree of prestress in PO. Due to the higher modulus of Au versus PO, compressive stress occurs on Au bowtie regions on PO, which leads to surface buckling at the two highest annealing temperatures; regions with a 5 nm gap between bowtie nanoantennas are observed and the average reduction is 75%. Reflectance spectroscopy and full-wave electromagnetic simulations both demonstrate the ability to tune the plasmon resonance wavelength with a window of approximately 90 nm in the range of annealing temperatures investigated. Surface-enhanced Raman scattering measurements demonstrate that maximum enhancement is observed as the excitation wavelength approaches the plasmon resonance of Au bowtie nanoantennas. Both the size and morphology tunability offered by PO allows for customizing optical response.
منابع مشابه
Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer
We report on a temperature-responsive tunable plasmonic device that incorporates coupled bowtie nanoantenna arrays (BNAs) with a submicron-thick, thermosensitive hydrogel coating. The coupled plasmonic nanoparticles provide an intrinsically higher field enhancement than conventional individual nanoparticles. The favorable scaling of plasmonic dimers at the nanometer scale and ionic diffusion at...
متن کاملActively tunable bistable optical Yagi-Uda nanoantenna.
We propose and theoretically demonstrate a novel type of optical Yagi-Uda nanoantennas tunable via variation of the free-carrier density of a semiconductor disk placed in a gap of a metallic dipole feeding element. Unlike its narrowband all-metal counterparts, this nanoantenna exhibits a broadband unidirectional emission and demonstrates a bistable response in a preferential direction of the fa...
متن کاملBowtie plasmonic nanoantenna arrays for polarimetric optical biosensing
We report on the first polarimetric plasmonic biosensor based on arrays of bowtie nanoantennas. Using the Finite Element Method (FEM) the phase retardation between the components of light polarized parallel and perpendicular to the axis of the nanoantennas is studied. After optimizing them for high volumetric sensitivity at a wavelength of 780 nm, sensitivities ~5 rad/RIU are obtained, correspo...
متن کاملSurface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method
We report on the structural and optical properties of individual bowtie nanoantennas both on glass and semiconducting GaAs substrates. The antennas on glass (GaAs) are shown to be of excellent quality and high uniformity reflected by narrow size distributions with standard deviations for the triangle and gap size of = 4.5 nm = 2.6 nm and = 5.4 nm = 3.8 nm, respectively. The corresponding optica...
متن کاملTunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching
We fabricated large-area metallic (Al and Au) nanoantenna arrays on Si substrates using cost-effective colloidal lithography with different micrometer-sized polystyrene spheres. Variation of the sphere size leads to tunable plasmon resonances in the middle infrared (MIR) range. The enhanced near-fields allow us to detect the surface phonon polaritons in the natural SiO2 thin layers. We demonstr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 27 10 شماره
صفحات -
تاریخ انتشار 2016